2 research outputs found

    In flight performance and first results of FREGATE

    Full text link
    The gamma-ray detector of HETE-2, called FREGATE, has been designed to detect gamma-ray bursts in the energy range [6-400] keV. Its main task is to alert the other instruments of the occurrence of a gamma-ray burst (GRB) and to provide the spectral coverage of the GRB prompt emission in hard X-rays and soft gamma-rays. FREGATE was switched on on October 16, 2000, one week after the successful launch of HETE-2, and has been continuously working since then. We describe here the main characteristics of the instrument, its in-flight performance and we briefly discuss the first GRB observations.Comment: Invited lecture at the Woods Hole 2001 GRB Conference, 8 pages, 15 figure

    DEVELOPMENT OF pNH 4 -ISFETs MICROSENSORS FOR WATER ANALYSIS

    No full text
    International audienceFront-side connected, N-channel, normally-off, SiO2/Si3N4 chemical field effect transistor (ChemFET) microsensors have been fabricated using a standard P-well silicon technology. These ChemFETs microsensors were adapted to ammonium ion detection thanks to photosensitive polysiloxane (PSX) polymer containing nonactine as an ionophore. The ammonium-sensitive membrane has been deposited either manually by micropipette, either by spin coating and patterned using photolithography technique. Both processes have been studied and compared through the ammonium ion determination. The manually deposed layers have been characterised by thickness non-reproducibility. Therefore, spin-coated layers have good reproducibility, but their thickness of 30 µm has been responsible for an increase of the ISFET threshold voltage and a decrease of its bias current. Nevertheless, in both cases, good sensitivities have been shown on the [1 – 5] pNH4 range even if saturation phenomena have been evidenced for the lowest concentrations. These pNH4-ISFETs microsensors are developed for the monitoring of environmental pollution and more precisely for ground water analysis
    corecore